Solutions

Exam 2 Sections 2.1-2.5 and 3.1-3.4

Name:_

Do not write your name on any other page. Answer the following questions. Answers without proper evidence of knowledge will not be given credit. Make sure to make reasonable simplifications.

Show your work!

1. (10 points) Draw the phase diagram for the autonomous differential equation

$$\frac{dx}{dt} = (x^2 - 5x + 4)(x^2 - 16)$$

and determine which critical points are stable and unstable.

$$O = (x^{2} - 5x + 4) = (x - 4)(x - 1)$$

$$O = (x^{2} - 16) = (x - 4)(x + 4)$$

$$S = \sum_{x = 1, 4, 4, -4} pts Q$$

$$X = 1, 4, 4, -4.$$

Thase aglam

2. (10 points) Consider a rabbit population satisfying the logistic equation

$$\frac{dP}{dt} = 2P - (0.005)P^2,$$

where t is measured in years. If the initial population is 700 rabbits, how many months does it take for P(t) to reach 105% of its limiting population M?

$$\frac{dP}{dt} = 2P - (0.005)P^2 = 0.005P(400-P)$$

$$\frac{Logistic Egn!}{P(+)} = \frac{400.700}{700 + (-300)e^{2t}}$$

$$\frac{105\% \text{ of } 400 = 420}{420} = \frac{280,000}{700 + (-300)e^{2t}}$$

$$(-300)e^{2t} = \frac{280,000}{420} - 700 = -33.\overline{3}$$

$$e^{2t} = 0.\overline{1}$$

$$-2t = \ln(0.\overline{1}) \approx -2.197$$

$$t \approx 1.099 \text{ yrs or } 13.18 \text{ months}$$

3. (3 points) Recall that an object's velocity (moving vertically) is given by

$$\frac{dv}{dt} = -g - \rho v^p,$$

where g is the force of gravity, $\rho = \frac{k}{m} > 0$, and $1 \le p \le 2$. Suppose a team of scientists are trying to determine a projectile's escape velocity from Earth's atmosphere. That team of scientists makes the assumption that p = 2 and finds that the initial velocity required to escape Earth's atmosphere (without additional thrust) is given by

$$v_0 = \sqrt{\frac{2GM}{R}}$$

where M is the mass of the Earth and R is its equatorial radius. Give a sentence of justification as to why this initial velocity will be sufficient to escape Earth's atmosphere for all values of p.

This is sufficient because p=2 assumes the largest amount of air resistance, meaning for pc2, the initial velocity would be less than JZGM

4. (7 points) Consider a body that moves horizontally through a medium whose resistance is given by

$$\frac{dv}{dt} = -2v^{3/2}.$$

Assuming that v(0) = 1 and x(0) = 1, find the position x(t) as a function of t.

$$\frac{dv}{dt} = -2\int_{0}^{3/2} \int_{0}^{2} \frac{dv}{\sqrt{3/2}} = \int_{0}^{2} -2dt$$

$$-2\int_{0}^{1/2} = -2t + C$$

$$w/v lo) = 1, -2 = C$$

$$S_{0} \quad \sqrt{1/2} = t + 1 = 7 \quad v = \frac{1}{(t+1)^{2}}.$$
Then
$$x(t) = \int_{(t+1)^{2}} \frac{1}{dt} = \frac{-1}{t+1} + C.$$

$$W: th \quad x(0) = 1 = -1 + C = 7 \quad C = 7.$$

$$S_{0} \quad x(t) = \frac{-1}{t+1} + 2.$$

5. (10 points) Find the general solution of the differential equation $\mathbf{5}$

$$6y^{(4)} + 5y^{(3)} + 25y'' + 20y' + 4 = 0$$

which has characteristic function

$$(r^{2}+4)(6r^{2}+5r+1) = 0.$$

$$Y = \pm 2i$$

$$6r^{2}+3r+2r+1 = 0$$

$$3r(2r+1)+2r+1 = 0$$

$$(3r+1)(2r+1) = 0$$

$$r = -\frac{1}{2}, -\frac{1}{3}.$$

So
$$y = c_1 e^{-\frac{1}{2}t} + c_2 e^{\frac{1}{3}t} + (a_1, cos 2t + b_1, s_1, n_2)$$

6. (10 points) A 8-lb weight (mass m=0.25 slugs) is attached both to a vertically suspended spring that it stretches 3 in. and to a dashpot that provides 2 lb of resistance for every foot per second of velocity.

- (a) The weight is pushed up 6 in above its static equilibrium position and then released from rest at time t = 0, find its position function x(t).
- (b) Determine if the motion is over-damped, critically damped or under-damped.

Hint: If you can not figure out the constants, make a guess and do the rest of the problem to demonstrate your ability to do other aspects of the problem for partial credit.

$$m=0.2S, K = \frac{8}{1} = 8, C = 2$$

So $mx'' + cx' + Kx = 0 \Rightarrow 0.25x'' + 2x' + 8x = 0 \Rightarrow x'' + 8x' + 32x = 0$
Char Eqn: $r^{2} + 8r + 32 = 0 \Rightarrow r_{1,2} = \frac{-8^{\frac{1}{2}}\sqrt{8^{2} + 4.32}}{2} = -4^{\frac{1}{2}} = -4^{\frac{1}{2}}i^{\frac{1}{4}}i^{\frac{1}{4}}}$
So $x = e^{4t}(A\cos 4t + B\sin 4t)$ and we have under-damped notion
Us also have $x_{0} = -\frac{1}{2}$ and $v_{0} = 0$.
So $x_{0} = \frac{1}{2} = A$. $v_{0} = 0 = \left[4e^{4t}(\frac{1}{2}\cos 4t + B\sin 4t) + e^{4t}(2\sin 4t + 4B\cos 4t)\right]_{t=0}^{t}}$
 $= -2 + 4B \Rightarrow B = \frac{1}{2}$.
Therefore $x(t) = \frac{-4t}{2}(\cos 4t + \sin 4t)$.